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Abstract—Robotic exploration is used to maintain an op-
erator’s situational awareness, scout unknown or dangerous
environments, and search urban environments with many ob-
structions. Fully autonomous exploration enables the use of
multiple robotic agents for better surveillance, but neglects the
operator’s task intuition and task goal evolution. We hypothesize
that by including the human in the control loop, the autonomy
will be more robust in adapting to unplanned changes and
better able to assist the operator at the given task. We are
incorporating a human input by asking the operator to shade,
and thus locate, areas for exploration on a haptic tablet for
minimal to no disturbance of operator’s visual attention. An
information density metric, ergodicity, will be used to generate
decentralized control trajectories of the swarm of drones during
a search and locate task in a virtual environment. Different
levels of autonomy (direct control, shared control, and fully
autonomy), environment complexity (rural vs. city), and number
of drones (single drone vs. swarm) will be tested. We predict
shared control will result in better perception augmentation of
operator’s environment, perception degradation of the outside
observers, and overall, better task performance. A range of
biometric data will be collected to evaluate the operator’s ongoing
situational awareness. Future work involves using the biometric
data to create a machine learning model and adjust the level
of control sharing in real time based on operator’s cognitive
state. If this method of shared control leads to improved task
performance, it can be extended to other human-robot interaction
and robotic exploration applications.

I. INTRODUCTION

While a single drone can successfully track a dynamic
target [1], in scenarios where time is critical and where vast
regions of space need to be explored, such as in firefight-
ing [2], ecological surveillance for conservation purposes [3],
and humanitarian efforts in post-disaster management and
research [4, 5], multiple drone deployment is necessary. As
the number of drones increases, so does the cognitive com-
plexity required to operate the swarm of drones [6]. Under
high cognitive demands, individuals may experience mental
overload at maximal task demand [7] and difficulty reallo-
cating attention from one task to another [8, 7, 9]. This is
problematic as operators often have to switch between drone
operation, environmental surveillance, and task completion.
Fully autonomous drones may relieve cognitive load, but
neglect task intuition and goal evolution. The appropriate level
of autonomy to improve task outcomes depends on a variety
of factors including additional cognitive demands, swarm size,
and the complexity of environment in which the human-swarm
system is operating in [6].

Shared control is one way the capabilities of a person and
robot such as a drone have been leveraged to result in better
task outcomes [10, 11, 12]. During a target-hitting task with
a joystick, giving the human operator high-level control over

path planning and position while the robot maintained low-
level control over aspects such as force management and
reducing oscillation improved task performance [11]. While
tasks in which the low-level execution may be unintuitive for
a user, such as balancing a cart-pendulum, robotic intervention
improves task outcomes [12]. Our method of shared control
gives users the ability to provide high-level inputs by indicat-
ing or shading areas of exploratory interest while the autonomy
uses ergodic control to specify decentralized trajectories and
control inputs for each member of the swarm.

Ergodic control is used to generate trajectories according
to the spatial statistics of information density so that the time
spend exploring given area matches the expected information
content of that area [13, 14, 15, 16]. User gestures on a
haptic tablet are being mapped to a distribution over the
region of interest and included in the spatial statistics of
expected information content. Areas of high information can
be also be found using sensors [13]. Trajectories are generated
using ergodic control so that the amount of time the drone
spends exploring given neighborhood matches the spatial
statistics expected information content in that neighborhood.
Together, the drones within a swarm will follow trajectories
that are collectively more ergodic with respect to the spatial
statistics than the individual drones [15], indicating that there
are information-gathering and coverage benefits to using an
ergodically controlled swarm as opposed to a single drone or
a swarm formation.

During hardware challenges and unplanned events in ex-
treme environments that prevent an individual drone from
operating correctly, it is important that the remaining swarm
population continues to explore optimally and augment the
user’s perception by providing an uninterrupted flow of infor-
mation. Perception augmentation is important in maintaining
an operator’s situational awareness for surveillance purposes,
and searching unknown, dynamic, or urban environments
with many obstructions. Unlike hierarchical search and rescue
control architectures [17, 18], ergodic control can be decen-
tralized [16]. Ergodic control enables graceful degradation
of individual drones while the remaining swarm population
will continue to follow trajectories according to the spatial
statistics.

The purpose of this study is to determine how to best lever-
age capabilities of the drones with the person to create more
robust autonomy. We interpret the meaning of robust autonomy
to be adaptive and effective in a variety of different, possibly
extreme and changing environments. Robotic exploration may
become more robust by thoughtfully incorporating operator
knowledge and intuition. This extended abstract outlines our
plans to begin to answer that question experimentally. In



a virtual reality environment, participants will be asked to
complete tasks in which perception augmentation through
drone surveillance assists in task completion. Moreover, the
effect of swarm movement on the perception of a third person
observing the task will be tested. We hypothesize that a
method of robotic exploration in between direct control (such
as speech and gesture recognition [19], joystick, or a handheld
controller) and fully autonomous control will result in greater
perception augmentation of the operator and improved task
performance.

II. METHODS

In this study we simulate the experience of operating swarm
of drones in various environments. As part of experiment,
subjects are asked to complete repetitions of two different tasks
in virtual reality worlds created in Unity software.

Fig. 1: Virtual reality environment created in Unity software.

The first task evaluates perception augmentation of the
operator while the second task evaluates the effects of the
different experimental factors on the perception of a third
person observing the swarm. These tasks were chosen because
increased information about the environment (i.e. perception
augmentation) would assist in task completion. The partici-
pants are given different levels of control over the drone/swarm
during different trials: direct control (the participant controls
all movement of the drone), shared control (the participant
will have control of high level surveillance goals), and no
control (drone movements are fully autonomous). This study
has been approved by Northwestern University’s Institutional
Review Board.

Each participant is completing one session lasting between
1-2 hours. Upon enrollment in the study, they are tasked
with either identifying the target of interest based on the
top down aerial view of the deployed swarm of drones or
to race against a simulated operator to reach the object of
interest. Then, they are going to participate in the search and
locate task in the virtual reality setting. There is a total of
12 different trials shown in Table I testing for the following
factors: number of drones, level of autonomy sharing, and
environmental complexity. The order in which each condition
is tested are randomized.

Direct Control Shared Control Full Autonomy
Single Drone High Low High Low High Low
Swarm High Low High Low High Low

TABLE I: Experimental design to test three independent fac-
tors: number of drones, level of autonomy, and environmental
complexity.

A. Tasks

1) Search and Locate Task: Participants are being asked
to search for and locate an object of interest in a virtual
environment while avoiding potential hazards. Throughout this
task, video feed from drone/s and the locations of the drone/s
relative to the operator provide additional information about
the environment to the user. The goal is to safely reach the
target/s of interest in least amount of time.

We are testing different levels of drone autonomy. During
direct control, the subject explicitly controls all drone move-
ments (or leading drone in the case of a swarm) using the
gaming joystick. During shared autonomy, the subject uses
inferred information about the environment, to shade areas
of expected information content on a TanvasTouch haptic
tablet [20]. Landmarks in the environment correspond to
textural and force feedback on the haptic surface and allow
the user to orient themselves and locate areas of interest. The
haptic tablet enables users to direct drones while continuing
to visually monitor their environment. The user input is
incorporated into the spatial statistics of expected information
content and used to control the drones. During full autonomy,
the drones ergodically explore the environment based on the
expected information density generated from a measurement
model of the user’s visual field and sensor measurement of
the environment. In cases where there are multiple drones, the
video feed that is displayed to the user is chosen using image
recognition of semantics [21].

2) Identification and Virtual Race Tasks: To quantify the
effect of the experimental factors on the a third person’s per-
ception, we have created two test scenarios, an identification
and a virtual race task.

In the identification task, participants are shown videos of
simulated search and locate tasks. They are asked to identify
the location of the object of interest based on the top down
aerial view of the swarm formation in different complexity lev-
els of environment and containing varying number of drones.
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Order of videos shown are randomized and the correctness of
their guess are not revealed to minimize any learning effects.

In the virtual race task, participants are placed in a prere-
corded virtual reality of a simulated search and locate task.
Based on their visual perception of the surroundings from
ground level, they race to find the target before the simulated
drone operator.

B. Exploration Algorithm

The exploration algorithm used for this study relies on
a concept from information theory, ergodicity. A trajectory
is considered ergodic if its time-averaged spatial statistics is
equal to that of a reference distribution [22]. In other words,
the trajectory x(t) in Figure 2 is ergodic with respect to a dis-
tribution φ(x) if, for every neighborhood N ⊂ X , the amount
of time x(t) spends in N is proportional to the measure
of N provided by φ(x), the reference spatial statistics [23].
In this case, the reference spatial statistics is the expected
information density and can be determined using sensors [13]
or a user input. In other work, ergodicity has been used to
represent the information encoded in human movement [24]
and perform drawing task [14]. The ergodic metric quantifies
the similarities between the two spatial distributions [22] and
is lower when the trajectory is more ergodic.

Fig. 2: An ergodic trajectory for a given probability density
function from Miller and Murphey [23]. The amount of time
x(t) spends in N is proportional to the measure of N provided
by the probability density function indicated by contour lines.

Ergodicity is computed by finding the sum of the weighted
squared distance between the Fourier coefficients of the spatial
distribution φk and the distribution representing the time-
averaged trajectory ck in Equation 1. Since we want the length
of time a robot spends in a neighborhood to equal to the
expected information content in that neighborhood, the optimal
robotic trajectory will have the lowest value of the ergodic
metric ε. Using Equation 1 as the objective function, ergodic
control methods have been developed to generate trajectories
so that the time-averaged spatial statistics approach that of
a reference, either before execution of the trajectory or real-
time [23, 16].

ε =

K∑
k1=0

...

K∑
kn=0

Λk|ck − φk|2 (1)

where K is the number of coefficients calculated along each
of the n dimensions, and k is a multi-index k = (k1, ..., kn).
The coefficients Λk weight the lower frequency information
higher and are defined as Λk = 1

(1+||k||2)s , where s = n+1
2 .

The reference Fourier coefficients and the Fourier coefficients
of the trajectory x(·) are evaluated by Equations 2 and 3 where
T is the final time of the trajectory.

φk =

∫
X

φ(x)Fk(x)dx (2)

ck =
1

T

∫ T

0

Fk(x(t))dt (3)

The Fourier basis functions are determined by Equation 4
where hk is a normalizing factor as defined in [22].

Fk(x) =
1

hk

n∏
i=1

cos(
kiπ

Li
xi) (4)

C. Data Collection

The VR platform used for simulating different environments
is the HTC Vive (Figure 3) with Unity software. Throughout
the experiment, we are collecting various forms of biometric
data that have been found to correlate with cognitive availabil-
ity including eye tracking, electroencephalogram (EEG), blood
pressure, and heart rate. The Pupil Labs’ HTC Vive Binocular
Eye Tracking has been unobtrusively installed on the HTC
Vive to measure independent eye gaze, and pupil position and
diameter.

Fig. 3: HTC Vive virtual reality platform [25].

Up to 32 channels of EEG signals will be gathered using
Emotiv’s EPOC Flex (Figure 4), a saline sensor EEG cap that
participants will wear under the HTC VIVE headset.

Continuous blood pressure measurements and heart rate as
well as one channel electrocardiogram (EKG) will be collected
using the SOMNOtouch PSG (Figure 5) which uses a cuffless
non-invasive method of data aquisition.
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Fig. 4: Emotiv EPOC Flex EEG cap [26].

Fig. 5: SOMNOtouch NIBP, a cuffless solution for ambulatory
blood pressure recording [27].

D. Analysis

Both tasks have been designed such that perception aug-
mentation is crucial to task performance. Therefore, we are
using task performance metrics to evaluate the effect of the
autonomy allocation, number of drones, and environmental
complexity on perception. In the search and locate task, we
are using metrics such as time to completion and percent
success. In the identification task, the perception of the third
person observing the swarm movements aerially is measured
by distance between the true location of the target and the
predicted location by the observer. In the virtual race task, the
perception of the third person observing the task within the
environment while attempting to complete the same task as
the operator is measured by time to completion.

For each of these metrics, a three-factor repeated mea-
sures ANOVAs will be used to evaluate significance. This
statistical method will evaluate significance for each of the
three independent variables: autonomy allocation, number of
drones, and environmental complexity. It will also evaluate
interaction effects between autonomy allocation, number of
drones, and environment complexity, to determine how the
optimal autonomy allocation changes in different situations.
We will use the biometric data to build a machine learning
algorithm to determine the cognitive availability of the user
real-time in collaboration with Siemens.

III. ANTICIPATED RESULTS

Both the human and the autonomy have valuable knowledge
about the environment and the areas in which it is most
beneficial to explore. Combining the knowledge of expected
information content from the human and autonomy into the
shared control architecture will result in more helpful drone

exploration, increased perception augmentation of the oper-
ator, and improved task performance. The level of control
allocation is a spectrum that ranges from direct control (no
control autonomy) to full autonomy. There is a region of
optimal control allocation in which the system as a whole
is most efficient at completing the task at hand as shown in
Figure 6. Since our shared control method lands in between
direct control and full autonomy, there will be significantly
better task performance in the middle region compared to the
end cases.

Fig. 6: Task performance vs. level of autonomy

The number of drones and complexity of the environment
will have a significant effect on task performance and auton-
omy allocation. A swarm of drones as opposed to a single
drone have greater sensing capabilities, and therefore will
result in better perception augmentation and task performance.
As the complexity of the environment and number of vi-
sual obstructions increase, perception augmentation through
autonomy will have a greater benefit to task performance.
Antithetical to perception augmentation, an outside observer
will experience more perception degradation when drones
are ergodically controlled compared to directly controlled
scenarios.

IV. FUTURE WORK

Using the biometric data, we will build a machine learning
model to determine the cognitive availability of the user real-
time in collaboration with Siemens. The biometric data-driven
model of cognitive availability in combination with ergodic
control enables us to provide adaptable autonomy according
to cognitive availability of the operator. With ergodic control,
we can provide a continuous spectrum of autonomy allocation
between direct control and full autonomy by weighing the
user input, in this case according to cognitive availability of
the operator. In later experiments, participants could complete
similar surveillance tasks with the assistance of physical
drones with an augmented reality surveillance system in
which the level of autonomy changes according to cognitive
availability.

As the cognitive availability of the operator changes during
the completion of a task, the most appropriate level of control
allocation will change as well. Figure 7 illustrates how we
expect the autonomy allocation to relate to the cognitive avail-
ability of the operator to pursue other tasks. When cognitive
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Fig. 7: Autonomy allocation update based on cognitive avail-
ability of the operator for optimal task performance.

availability of the operator is high, shifting control allocation
in the direction of direct control is the better choice. However,
when the cognitive availability is low due to the cognitive
demands of other tasks, shifting the control towards full auton-
omy would be the preferred choice to distribute the workload.
For individuals performing both a search and rescue task
and a short term memorization task simultaneously, adapting
the search and rescue autonomy according to the cognitive
availability of the user leads to improved memorization task
outcomes [9]. We expect this paradigm of adaptable autonomy
to lead to similarly improves outcomes.

V. CONCLUSIONS

This paper presents a proposed method of shared human-
swarm control and our experimental design to evaluate the
effectiveness of incorporating a human input in robotic ex-
ploration. If our method of shared control leads to improved
task performance, it would suggest that including an intelligent
operator input directly into the control loop could improve the
quality, efficiency, and robustness of robotic exploration. It
would indicate that our approach is a useful way to leverage
human’s knowledge and strength of autonomous systems in
order to create an interface that takes into consideration end
goal requirements as well as real-time operator needs. In the
future, it can be used to create adaptable autonomy according
to the cognitive availability of the operator. This work and
shared control paradigm can be extended to improve other ap-
plications of human-robot interaction and robotic exploration.
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