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Motivations

* The warming of the planet by
anthropogenic causes: a
threat to biodiversity.

* Ship-based methods are
discrete, release CO2 and are
limited in scaling across
space and time.

* Current robotic observation
platforms are constrained by
proximity to ship or shore and
onboard energy [1].
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* Need of tools capable of

persistently observing . (4%
phenomena at different Fig. 1: Coordinated observations that
spatio-temporal scales, in encompasses space, aerial, surface
harsh and remote ’ and underwater platforms.

environments [2].
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Objectives

Replace ship-based observation
with recent innovations in Robotics
and Artificial Intelligence (Al).

Monitor meso-scale dynamic
processes with mobile platforms
equipped with a wide-range payload
(Fig. 2).

Extend current efforts with data
driven operations based on shore-
side models.

Equip an ASV with an advanced Al
decision-engine capable of
autonomously generate its goals
based on online resources
computation, continuous risk
evaluation and models computed on
shore.
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Fig. 2: Envisioning the need of coordinated
autonomous robotic platforms for
environmental monitoring and
exploration [3].
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Methods — Automated Planning & Execution

Goal: generate plans for
desired outcomes or intents.

It synthesizes a sequence of
actions transforming the initial
state of a robot into a state that
satisfies predefined goals [4].

A Knowledge Engineering (KE)
process transforms the real
world into a symbolic
representation such that the
model is consistent and
accurate [5].

Execution

Fault Diagnosis &
Recovery

_

N
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Fig. 3: Continuous deliberation drives the

robotic agent in the real-world,
that in turn provides feedback,
acquired through sensors to
support the deliberation process.
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Methods — Automated Planning & Execution

The Teleo-Reactive EXecutive
(T-REX) [6] is the only
deliberative control framework
In operational oceanography.

Sustained and continuous
autonomous control is still an
open challenge.

Generated plans would likely be
invalid during sustained
exploration: self-awareness,
robustness to failures and risks
and autonomous goal
generation are needed.
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Fig. 4: T-REX agent high-
level block diagram.
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Fig. 5: Elements interacting with
T-REX, a deliberate
planning/scheduling framework.



AutoNaut — A green-energy ASV

* Wave-propelled ASV relying on
solar energy to drive propulsion
and scientific payload [7].

* Innovative propulsion system
relying on waves intensity and
ocean state.

Fig. 6: AutoNaut during operations in
* Vehicle suitable for long- Trondheimsfjord.

duration missions without
human intervention.

* Bottom-up design of its
navigation control and
communication system,
targeting robustness and
endurance [8].
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Fig. 7: AutoNaut 3D model.




System Architecture
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Fig. 8: Hardware layered architecture [9].
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Communication Means
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Fig. 9: Communication channels: 4G/LTE, VHF radio, Iridium Satellite.
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Field Missions in Trondheimsfjord

L1 Manual Control

IRIDIUM L1
MOD/SWI
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[62nz0.414 / 10E5.074

r
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AutoNaut Control Interface

®e

Load Power: 42.5 W
Panels 1-2 Power: 61.3 W
Battery Voltage: 12.16 V
Commanded Rudder Angle:
Commanded Thrust:
Applied Rudder Angle: -4 °
Applied Thrust: 80 %
C0G281.18 °

SOG: 1.41 kn

Satellites: 10

LAT: 63° 19' 58.6"

LONG: 10° 5' 2.0"

Kp: 1

Ki: 0.1

Error: -1

Integrated Error: -190

Received: $CR601,0,000000,42.5,61.3,12.16,81.18,1.41,10
6319.9760218,01005.0339563,1,0.1,-1,-190,-45,80,1,0
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Fig. 10: LSTS Toolchain, user Interface for real-time monitoring of the mission [10].



Preliminary Results

Fig. 11: 5 waypoints maneuver. Fig. 12: Vehicle during a mission.
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Fig. 13: Comparison between
desired course, measured
course and measured
heading.

>
(@))
©
o
=
=
O
(¢))
-
©
c
(40)
(¢))
(&
C
2
(&
0p)
(.
o
>
b=t
wn
[
(¢))
=
=
=
=
)
(@))
(¢))
3
[
(@)
Z

GBS B R EEEbEEEb s nnaanhbetlbbbbtboousrausnsoE a0ausn s EEEENREEEEEREETRNEE




>
(@))
©
(@)
c
=
O
()]
=
©
c
(40)
(¢))
(&
C
2
(&
p)
(T
o
>
b=t
wn
[
Q
=
=
=
=
S
(@))
()
3
[
(@)
Z

Main Challenges

Environmental factors: propulsion depends on surface waves.

Balancing goal-driven opportunism with intent: validity of
collected data or water samples is highly time-dependent.

Onboard goal-driven autonomy has to trade operational risk:
onboard goal-driven autonomy has to combine current operational risk
with the intent shaped by humans on shore.

Communication challenges: what data transmit and when highly
depends on the remoteness of areas of operation and therefore on
the technology used. P e—— |

Fig. 14: During operations.
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