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Marine Robotics (2019)
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Why use robots?

� Sampling ocean features is 

often done from research 

vessels

• Costs per day can exceed 

$30,000 (€26,750)

• Vessel only samples in a 

single place at a given time

� Autonomous vehicles 

decrease sampling costs 

while increasing sampling 

quality
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Marine Robotics (2019)

l State of practice

− Operator pre-specifies 
waypoints

− A team of experts look at 
the data

− The team specifies more 
waypoints

l Goal: marine autonomy

− In situ decision making

− Scalability to many 
vehicles

− Shared autonomy with 
technicians
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� Many oceanographic features 

can be described as 

‘hotspots’ in the environment

• Temperature

• Bio-Acoustics

• Chemical Spills

� Planning and monitoring 

algorithms can improve data 

collection ability
Bio-Acoustic	Hotspots	 in	data	

collected	in	Monterey,	California,	

May	2017

Ocean features
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� Robot data gathering

• Mapping from 

asynchronous 

observations

• Topological planning 

to improve efficiency

S.	McCammon	and	G.	Hollinger	“Topological	

Hotspot	 Identification	for	Informative	Path	

Planning	with	a	Marine	Robot”	ICRA,	2018

Adaptive autonomy
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1. Find local maxima and minima

Hotspot identification

1
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1. Find local maxima and minima

2. Expand regions around these points using 

Fast Marching Method

• Adapt travel cost function based on which 

region we are expanding

Hotspot identification

1 2
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1. Find local maxima and minima

2. Expand regions around these points using 

Fast Marching Method

• Adapt travel cost function based on which 

region we are expanding

3. Merge Adjacent regions with the same label

• Create edges along merged minima locations

Hotspot identification

1 2 3
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1. Find local maxima and minima

2. Expand regions around these points using Fast 

Marching Method

• Adapt travel cost function based on which region 

we are expanding

3. Merge Adjacent regions with the same label

• Create edges along merged minima locations

4. Result: Topological Graph 

Hotspot identification

1 2 3 4
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� Goal is to allocate time 

between hotspot regions to 

maximize information collected

• Subject to budget 

constraints

� Lagrange multiplier method 

distributes time between 

hotspots

� Within each hotspot a greedy 

algorithm used to plan path

Plan graph

T	=	10	min

T	=	0	min

T	=	5	min

T	=	5	min
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� One-shot planning approach 

assumes a static world

• Not appropriate for long-

term ocean deployments in 

a dynamic environment

� Receding Horizon Planning

• Interleave planning and 

execution over course of 

deployment

• Incorporate new 

observations during each 

planning cycle

Long-term planning

T	=	10	min

T	=	0	min

T	=	5	min

T	=	5	min
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� Gaussian Process (GP) world estimator allows

new observations to be incorporated

• Length-scale parameters control how 

correlated two observations are

• Upper Confidence Bound (UCB) 

encourages exploration

� Add time to GP

• Additional dimension of prediction

• Train GP offline using satellite data to 

determine appropriate length-scale

• Incorporate increasing uncertainty in past 

observations

Modeling and estimation

f(x)

x
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� Performed two deployments Summer 2018

Ocean deployments

18	km

Deployment	

Zone:	August

Deployment	

Zones:	July
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� Original deployment 

zone in heavy 

southerly currents

� Limited period of 

time with active 

navigation enabled 

before recovery

July 2018 deployment

15
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� New deployment 

zone farther west to 

avoid strong 

currents

� Successfully 

identified upwelling 

front in bottom right 

portion of map

August 2018 deployment

44.85o N

44.80o N

44.75o N

44.70o N
Waypoint	Locations

Glider	Locations
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August 2018 deployment

Upwelling	

front	

found!

17
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� Ocean fronts occur at the 

interface between distinct 

masses of water

• Warm & Cool

• Salty & Fresh

� Biological hotspots form at 

interface between warm water 

and cool, nutrient-rich water

� Physical processes which drive 

mixing along fronts are not well 

understood Image	Credit:	Physical	Oceanography	Numerical	

Group	 (PONG),	Texas	A&M	

Tracking ocean mixing fronts
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� Robotic Ocean Surface 
Sampler (ROSS)
• Developed at Oregon State 

University (Dr. Jonathan 

Nash)

• Continuous satellite and radio 

communications

• .5 - 1 m/s velocity depending 

on amount of seaweed fouling

• Two assets

Heterogeneous vehicles
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� Robotic Ocean Surface 
Sampler (ROSS)

� Slocum G3 Glider
• Built by Teledyne Industries

• Infrequent satellite data 

connection
▪ Updates only when surfaced 

(~2 hours) 

• .4 m/s velocity

• Four assets

Heterogeneous vehicles
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Robotics

� Use	automation	

to	reduce	

operator	load	

during	 sampling	

tasks

� Planning	

algorithms	

coordinate	

multiple	

heterogeneous	

assets

Oceanography

� Decades	of	

experience	in	

manually	sampling	

ocean	features

� Deep	

understanding	 of	

dynamic	physical	

ocean	processes

Improve	quality	of	ocean	science	

data	through	adaptive	

autonomous	 sampling

Improve	autonomy	with	

knowledge	of	ocean	

processes	in	decision	making

Collaborations with scientists
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� Gaussian Processes (GPs) are a commonly 

used tool in field robotics

• Provide scalar field and uncertainty 

estimates

• Several drawbacks

▪ Standard RBF Kernel does not extrapolate 

outside of data points well

▪ Scaling issues with large sample data sets

� Inform GP with nearest-neighbors prior

• Nearest Neighbors environment estimation 

provides initial guess for front location

• Allows world model to extrapolate front 

location beyond data collected

Methods: Environment estimation
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Robots’	

Observations

Compute	Nearest	

Neighbors	Model	

with	subset	of	

data

Uniformly	sample	

nearest	neighbors	

model	 for	pseudo-

observations

Construct	GP	from	

pseudo-

observations	 for	

use	as	prior	mean

Construct	second	

GP	using	 full	

dataset	on	

difference	from	

prior	mean	

Add	 to	prior	mean	

for	final	

environment	

estimation

Methods: Environment estimation
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� Key challenge: Adaptive control of 4-6 heterogeneous assets 

for sampling task

• Scalability - Handle large planning space

• Adaptability - Enable robots to adapt behavior to new information

• Flexibility - Account for the realities of physical robot operation

Methods: Adaptive decision making
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� Incremental tree search 

algorithm

• Leverages biased random 

sampling

• Exploits “smoothness” of 

search space

• Anytime algorithm

• Only requires evaluation of 

full paths

• Can incorporate problem-

specific heuristics

Methods: Monte Carlo Tree Search (MCTS)
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� Key challenge: Adaptive control of 4-6 heterogeneous assets 

for sampling task

• Scalability - Handle large planning space

• Adaptability - Enable robots to adapt behavior to new information

• Flexibility - Account for the realities of physical robot operation

� Solution: Iterative optimization using Monte Carlo Tree Search

• Scalability - Iterative optimization sidesteps planning in joint space

• Adaptability - MCTS is proven algorithm for informative path 

planning tasks

• Flexibility - Simple to add / remove robots from planning step

Methods: Adaptive decision making
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Planning	 robot

set

Current	Belief

MCTS	to	plan	

for	single	robot

Repeat	for	fixed	number	of	

iterations

Repeat	for	each	robot	

in	planning	robot	set

Plan	for	all	

robots

Methods: Multi-robot coordination
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� Planner’s output is only as good as the 

objective function

• Careful tuning of objective function weightings 

and parameters to achieve good performance 

in oceanographic task

Methods: Objective function
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� Planner’s output is only as good as the 

objective function

• Careful tuning of objective function weightings 

and parameters to achieve good performance 

in oceanographic task

Exploitation	Term:Magnitude	 of	

salinity	gradient	along	edge

Methods: Objective function
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� Planner’s output is only as good as the 

objective function

• Careful tuning of objective function weightings 

and parameters to achieve good performance 

in oceanographic task

Exploration	Term: Amount	of	edge	

novelty	from	GP	uncertainty

Methods: Objective function
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� Planner’s output is only as good as the 

objective function

• Careful tuning of objective function weightings 

and parameters to achieve good performance 

in oceanographic task

Combination	Term: Encourages	exploration	in	areas	likely	to	hold	gradient	
similar	to	UCB.		Penalizes	repeatedly	sampling	 the	same	gradient

Methods: Objective function



32

� Planner’s output is only as good as the 

objective function

• Careful tuning of objective function weightings 

and parameters to achieve good performance 

in oceanographic task

Temporal	Discount: Reduce	reward	
for	future	edges	due	to	uncertainties

Methods: Objective function
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� Planner’s output is only as good as the 

objective function

• Careful tuning of objective function weightings 

and parameters to achieve good performance 

in oceanographic task

Continuity	Weighting: ADCPs	and	other	sensors	cannot	collect	data	
when	vehicle	turns,	 so	encourage	straighter	paths	by	penalizing	

edges	that	are	not	collinear	with	prior	and	subsequent	edges

Methods: Objective function
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Example autonomy output

Estimate Novelty
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� Multiple sources of time-varying dynamics 

of ocean fronts 

• Local forces and mixing change shape of front

• Front is moved by large global currents

Methods: Lagrangian moving frame
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� Tracking Lagrangian “packet” of water increases the 

time over which sensor observations remain relevant 

� Multiple sources of frame motion estimate

• Physical drifter in water

• Virtual drifter informed by shipboard Acoustic Doppler 

Current Profiler (ADCP)

� Integrate data from multiple sources with Kalman 

Filter

� Project paths into future predicted positions of 

moving frame using velocity estimates

Methods: Lagrangian moving frame
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� Interface provides state of autonomy 

system at a glance

Decision support GUI
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� Interface provides state of autonomy 

system at a glance

Last	known	

asset	positions

Decision support GUI
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Last	known	

asset	positions

Robot	

Planned	Paths

� Interface provides state of autonomy 

system at a glance

Decision support GUI
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Last	known	

asset	positions

Robot	Planned	

Paths

Map	of	current	

GP-NN	belief

� Interface provides state of autonomy 

system at a glance

Decision support GUI
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Last	known	

asset	positions

Robot	Planned	

Paths

Map	of	current	

GP-NN	belief

Last	known	

obstacle	

locations

Decision support GUI
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*Timeline	approximately	to	scale

Robots	under	manual	control

Autonomy	 Experiment	1	(~14h)

Autonomy	 Experiment	2	(~57h)

Autonomy	 Experiment	3	(~35h)

Autonomy	 Experiment	4	(~18h)

Timeline of experiments
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� Autonomy Experiment 1 (14 hours)

• Initial systems testing and debugging of autonomy system

• 3 Slocum gliders and R/V Pelican

� Autonomy Experiment 2 (57 hours)

• Experimented with different types of planning frames

▪ Static, Drifter-based, ADCP-Based

• 3-4 Slocum Gliders and 0-2 ROSS vehicles

� Autonomy Experiment 3 (35 hours)

• Experimented with Combination Term in MCTS objective function

• 3-4 Slocum Gliders and 0-2 ROSS vehicles

� Autonomy Experiment 4 (18 hours)

• Use best parameters discovered in previous 3 experiments

• 3 Gliders and 0-2 ROSS vehicles

Experiments in Gulf of Mexico
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Vehicle up time
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Example front crossings
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Example front crossings
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Example front crossings
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� Autonomy was able to identify a front and 

track its motion across an ~18 hour period

during longest experiment

� More results coming (hot off the presses)!
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Preliminary autonomy results
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Preliminary GUI results

� GUI was often used for visualization of 

vehicle positions and data

• Both during autonomy and manual experiments

(>90% of the time)
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Oregon State University Robotics

l PhD/MS programs 

(since 2014)

l 11 core faculty

l ~80 grad students

l 45 affiliated faculty

l Graf hall 

collaborative space

l Legged, aerial, 

aquatic surface, 

underwater, and 

ground robots
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