A User-Centric Perspective on Robust Autonomy in Unstructured Environments

Dr. Robin R. Murphy Professor, Computer Science & Engineering Texas A&M Center for Robot-Assisted Search & Rescue

Special thanks to students, faculty, industry volunteers, and sponsors such as NSF, ONR, DARPA, ARL, DOE, SAIC

robin.r.murphy@tamu.edu

Texas A&M: Leader in Engineering

- 3rd in Engineering Research (MIT, Georgia Tech)
- 144km from Houston
- 68,825 students
 - 20,000 graduate students
 - 16,000 Undergraduates in Engineering
 - 500 faculty in engineering

TAMU: Leader in Disaster Practice

Disaster City, College Station, TX

robin.r.murphy@tamu.edu

Outline

- Unstructured environments
- Why they are hard for platform design
- Why they are hard for users
- Where autonomy has not helped and why

robin.r.murphy@tamu.edu

What You Could See or Could Infer

Unstructured work envelopes

- Deconstructed: structure is destroyed or damaged; a priori knowledge is likely to be wrong
- Irregular: physical characteristics are not uniform
- Unpredictable
- Temporal variability: may change over time (e.g., day, night, fog, ...)

Extreme conditions

- Size or scale
- Operating at the boundaries of nominal design parameters
- Emergency: time pressure, consequences of poor performances

What You Didn't See: They All Were Teleoperated

- Very hard to be autonomous in real time in these conditions
- Humans notice things, make notes for extraction
- Lots of people looking at displays at the same time!
- And operators turn off the autonomy...

Unstructured Environments

Platforms

Unstructured impacts design

Platform Design Impacts User

- User interface
- Sensors and mountings
 - Inherent remote presence, sensemaking, and transparency
 - Ex. Midas

Platform Impacts

- "Unnatural" viewpoints for the user
- Environment is unknown, partially known, or deconstructured
- Unstructured Environments Effectively Double Cognitive Workload
 - High cognitive load, effectively doubles
 - 2 heads are 9 times more effective than 1

Unstructured In General Impacts User

- Physiological
 - e.g., Fatigue
- Psychological
 - e.g., Pressure

Increases possibility of failures

Impact Depends on Normal, Off-Normal

Five Ways Applications Can Be Off-Normal

• Robot

- different robot or have added a new payload or manipulator
- Mission
 - new applications that have not been trained for such as lowering a sensor through a guardrail; a new sequence of tasks. of which the robot and operator have proficiency in; or it can be a novel task and thus proficiency is unknown

Robot work envelope

- may be more cluttered, deconstructed than normal; smaller or more confined

• Operator

- Skills: skills, training, experience different
- State: May be under pressure, may not be well-rested or healthy, may distrust due to prior bad experiences

• Operator work envelope

 a new location or the type of area may be more limited in space to set up and move around in, physically uncomfortable, operator may be wearing PPE that have little experience with

copyright Robin R Murphy 2018 robin.r.murphy@tamu.edu

Capacity: Physiological and psychological state

15

robin.r.murphy@tamu.edu

3 Categories of Drains on Cognitive Resources (after Wickens Multiple Resource Theory)

"Novel" Changes Cognitive Resources

 If the demands are in the "green" area, all is well, but if *demands expand* out, then get into "red" or more
 error-prone

Midas Mine Disaster 2007: Example of Demands Exceeding Capacity

- Perceptual demands
- Task demands
- Team work demands

robin.r.murphy@tamu.edu

Example of Demands Exceeding Capacity

- Perceptual demands
- Task demands
- Team work demands

But Other Factors *Decrease* the Circle of Operator Capacity

- Physiological
 - e.g., Lack of sleep, rusty on skills, wearing PPE
- Psychological
 - e.g., Consequences, worry

physiological and psychological factors

Crandall Canyon Mine (2007)

Subterranean Operations—Trends, Challenges and Cooperation

robin.r.murphy@tamu.edu

Crandall Canyon 2007

Subterranean Operations—Trends, Challenges and Cooperation

Capacity: Physiological and psychological state

23

Worst Case is to Try New Things During an Emergency

robin.r.murphy@tamu.edu

Autonomy Should Help

- But not if it is unreliable or unpredictable
- 4 Examples

Fukushima Daiichi (2011)

Emergency

Fukushima Daiic

Emergency

Fukushima Daiichi (2011)

Emergency

- Existing robot
- Different mission
- Different robot work envelope
- Different operator work envelope- including working with SME
- Jet lag, stress, PPE, and a major secondary quake

Fukushima Daiichi (2011)

Emergency

New Robot OR New Mission or task OR New Robot work envelope OR New Operator work envelope AND **Decreased Operator "capacity"**

- Existing robot
- Different mission
- Different robot work • envelope
- Different operator work ulletng

Turned off the navigational autonomy due to lack of visibility L, and a

Hurricane Harvey (2017)

Emergency

Hurricane Harvey (2017)

Emergency

- Existing robots
- Familiar missions
- Familiar robot work envelopes
- Familiar operator work envelopes- including working with SME
- Fatigue, a bit rusty, pressure due to cost

DJI Matrice 600

Emergency

Hurricane Harvey (2017)

Emergency

New Robot OR New Mission or task OR New Robot work envelope OR New Operator work envelope AND **Decreased Operator "capacity"**

- Existing robot
- Familiar mission
- Familiar robot work envelope
- envelope in lack of M600 due to lack of ng

trust because of bugs

y, pressure

Kilauea Volcanic Eruption (2018)

Emergency

Kilauea Analysis (with Profs. D. Merrick (FSU), A. Wang, NSF)

Kilauea Volcanic Eruption (2018)

Emergency

- Existing robot
- Familiar mission
- Challenging robot work envelope and at night and 1,000 ft
- Unsafe operator work
 envelope
- Extreme fatigue

Kilauea Volcanic Eruption (2018)

Emergency

New Robot OR New Mission or task OR New Robot work envelope OR New Operator work envelope AND **Decreased Operator "capacity"**

- Existing robot
- Familiar mission
- Challenging robot work envelope and at night
- Unsafe operator work \bullet envelope

Took 3 flights to get the autonomous mapping package to work correctly

We Tend To Think of Implementing, Not Generating, Selecting, or Monitoring

robin.r.murphy@tamu.edu

Not just navigational autonomy...

- Computer Vision/Machine Learning for the Blanco River Floods (2015)
- 21 people missing, presumed swept away over a 5 mile stretch of river and flood plain
- Large number of volunteers with drones collecting data
- Need to examine high resolution images

Didn't Work: Different seasons, different vegetation

Blanco River, June 2015

Camp Creek Lake, Feb 2019

Didn't Work: Different seasons, different vegetation

Blanco River, June 2015

Camp Creek Lake, Feb 2019

Robust Autonomy Means...

- It is transparent; what it is doing, not necessarily how
- It is reliable and error-free
- It covers the entire task, not just the easy part
- It indicates whether it will be successful: expected false positive, false negative rates

Summary

- Unstructured environments are hard on platforms, harder on users
- Novel applications may decrease operator's cognitive capacity, but an emergency definitely will
- Autonomy won't help if it is not robust and useful from a systems perspective

Additional Resources

- *Disaster Robotics*, MIT Press, Murphy 2014
- User Interfaces: Disaster Robotics: Results from the ImPACT Tough Robotics Challenge, Springer, ed. Tadokoro 2019
- Off-normal: AHFE papers

DISASTER ROBOTICS

Capacity: Physiological and psychological state

45