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Arizona Game and Fish Department

To monitor wildlife interactions with highways in order 
to make the most effective management decisions

Contracts Branch

Mission:  To conserve, enhance, and restore Arizona's diverse wildlife resources 
and habitats through aggressive protection and management programs, and to 
provide wildlife resources and safe watercraft and off-highway vehicle recreation 
for the enjoyment, appreciation, and use by present and future generations



Our Goals
- Make data analysis more efficient
- Minimize observer-specific bias
- Compare accuracy/precision of 

classification to human observers
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Arizona Highways



Wildlife-Vehicle Collisions



Tracking Wildlife



Elk Movements Associated with a High-traffic Highway: Interstate 17 Final Report 647 
ADOT Research Center March 2013
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Camera Traps
Reconyx PC800 HyperFire Professional 
Semi-Covert Camera Traps

● Motion triggered
● Semi-visible infrared flash 
● Color images during the day, black 

and white images at night
● Sequence of 3-5 images at 2fps 

Between 1-9 cameras monitor each 
structure



Problems/Challenges
- Extremely large data sets   -  Inefficient analysis methods
- Wasted storage on blank photos -  User-specific bias
- Poor image quality                       -  False Negatives
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Wildlife - Annotation Tool 





MaskRCNN

(He, et al. 2018)



Validation

- 88% 
detection 
accuracy

- 40% 
classification 
accuracy



Validation



Testing - Escape Ramp

- 90% detection (18/20)
- 50% classification accuracy (9/18)
- One false positive



Inference - Overpass

- 95% detection (21/22) 
- 42% classification accuracy (9/21)
- No false positives



Errors

Interesting Results



Error Due to Training

- 6/9 misclassifications were due to unseen labels (cows or humans)



Future Directions
-improve detection/classification 

-increase the number of species

-classify sex/relative age

-track/count individual animals in a sequence of images

-identify direction of travel (did it cross or not cross, coming 
off the highway or entering the highway)

-use it on video

-use it to verify animal actually present before wasting 
storage
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Thank you!


