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Marine robotics research at ACFR

– Main focus of research has been on
– Platforms and sensing: vehicles, high-resolution stereo 

imaging, hyperspectral, lightfield imaging
– Navigation and mapping: SLAM using both visual and 

acoustic data, visualization
– Planning and Control: information based planning, low 

level control
– Data Analytics: automated processing of large volumes 

of data, automatic registration of multi-year datasets, 
identification of direct change as well as distributions of 
organisms

– Applications: Primary focus on survey to support ecology, 
archaeology and geoscience research

– Work with a large group of Australian and 
international collaborators
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Platforms and Sensing
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ROV Oberon on the Great Barrier Reef

– Our early work focused on the 
deployment of the ROV Oberon 
on the Great Barrier Reef

– The vehicle carried a 3CCD 
video camera and mechanically 
scanning sonar with an 
overlapping field of view

– Demonstrated how SLAM could 
be achieved by fusing this data 
to build 3D terrain models

S.B. Williams and I.Mahon, ‘Simultaneous Localisation
and Mapping on the Great Barrier Reef’, Proceedings of 
the IEEE International Conference on Robotics and 
Automation, Vol. 2, pages 1771 - 1776, 2004 
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AUV SIRIUS 
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Integrated Marine Observing System

– NCRIS is a program designed to provide 
infrastructure to support national research 
priorities

– Marine Science designated as one of 8 priority 
programs

– A $180M program to provide infrastructure to 
support the marine sciences in Australia (2007-
2018)

– Recently announced $1.9B investment in NCRIS 
over twelve years as part of Australian 
government’s Innovation Agenda
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Key ecological features

– Identification of 31 Key Ecological 
Features (KEFs) nationally

– IMOS observations contributing to 
long term monitoring and 
establishment of a national 
representative system of marine 
reserves

– Selecting what variables to 
monitor and where is a key focus 
of the NERP Hub

– Significant relevance to Australian 
Government’s program of marine 
bioregional planning 
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Integrated Benthic Monitoring Facility Objectives

– National perspective
– Long term monitoring of deepwater

(20 – 200 m) reefs
– Monitoring of major habitat forming 

species around Australia
– Interpreting dynamics of benthic reef 

systems in the context of biophysical 
coupling

– Strong engagement with node science, 
particularly in temperate Australia 
along the East and West coasts

– Review of program in 2016 to clarify 
distinction between facility and user 
group
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IMOS AUV Facility – Archive of 5M seafloor images available online
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Ecology

Archaeology

Geoscience

Methane 
hydrates, 
WHOI/ACFR, 
2011/2013

Deepwater
Horizon, 
WHOI/ACFR, 
2010

Sicily, 
RPM/ACFR, 

2011/2013

EV Nautillus
(Caribbean), 
URI/OET/ACFR, 
2013/2014

EV Nautillus (Med), 
URI/OET/ACFR, 2010-
2012

NOAA, 
Umich/Nottingham/ACFR
, 2015

Antikythera, 
WHOI/Argo/ACFR, 
2014/2015

Pavlopetri, 
Nottingham/ACFR, 
2010/2011

Fukushima, 
UTokyo/ACFR, 
2014

Artificial Hydrothermal, 
UTokyo/ACFR, 2014

Scott Reef, 
SOI/WHOI/URI/UH/AC

FR, 2015

Lizard Island, St 
Andrews/UMacQ
/ACFR,  2013-
2015

IMOS AUV 
Facility
2007-2017

Liquid Jungle, 
ACFR/WHOI, 
Panama, 2007

Okinawa Reefs, 
U Tokyo, Southampton, 
ACFR, 2017

Hawaiian Reefs, 
ACFR/SOI/WHOI/MIT/URI/UMich, 
Hawaii, 2018
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Navigation and Mapping
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Bathymetry from Stereo
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Bathymetry from Stereo

Slide 14
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Repeat surveys: day & night

Urchin Barrens in Tasmania
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Day survey 
no kelp, no urchins
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Day
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Repeat surveys across 
multiple years

Coral bleaching in 
Western Australia
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Western Australia – Heat Wave

Survey 2010 Survey 2011
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M. Bryson, M. Johnson-Roberson, O. Pizarro and S. 
Williams, "Repeatable Robotic Surveying of Marine Benthic 
Habitats for Monitoring Long-term Change", Workshop on 
Robotics for Environmental Monitoring at Robotics: Science 
and Systems, Sydney, Australia, July 2012.

April 2010 April 2011

April 2012 April 2013

Healthy
coral

Bleached
coral

Dead
coral Growing

corals
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Registering multi-year datasets

– Now examining detailed 
changes in structural complexity 
across plots

– Some areas show decreases in 
complexity due to mortality

– Others are increasing in 
complexity as branching corals 
begin to grow
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Recovery of cyclone impacted reefs

– Comprehensive surveys of reefs immediately 
following cyclone Ita in 2014, with some sites 
also surveyed prior to impact

– 7 days, 21 ‘reef records’
– Revisited these sites six months later and 

annual surveys to document recovery
– Lizard Island hit by another cyclone in 2015
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Approach

Pizarro et. al, 2017Pizarro et. al, 2017

2m

Habitat: Shallow water coral reef
Depth: 2m
Num of photos: 1,800
Image footprint: 2 m2

Image overlap: 60 – 80%
Area coverage: 130 m2 

Time: 15 min
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Habitat: Shallow water coral reef
Depth: 2m
Num of photos: 1,800
Image footprint: 2 m2

Image overlap: 60 – 80%
Area coverage: 130 m2 

Time: 15 min

Pizarro et. al, 2017

2m

Pizarro et. al, 2017

Approach
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PHOTOGRAMMETRY

Approx. area         = 130 m2 

Planar resolution =  4mm

2m
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Reef Records: Spatial & Temporal Data Layers

Digital Elevation Model

Image Mosaic

Cyclone Ita

T1 Apr

2014

T2 Oct

Cyclone Nathan

T3 May

2015

T4 Dec

Severe Bleaching

T5 Nov
2016

Mass Bleaching

T6 Nov

2017
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Predicting Climate Change Impacts

– Effects of climate-driven ocean 
change on reef habitat-forming 
species are diverse

– Related change in community 
composition on deep reefs (30–
90 m) across a latitudinal 
gradient (25–45oS) in 
southeastern Australia to high-
resolution environmental and 
oceanographic data

– Predicted future changes using 
downscaled climate change 
projections for the 2060s

– Models show an overall 
tropicalization trend in these 
deep temperate reef 
communities

MP Marzloff, ECJ Oliver, NS Barrett, NJ 
Holbrook, L James, SJ Wotherspoon and CR 
Johnson, ‘Differential vulnerability to climate change 
yields novel deep-reef communities’, Nature Climate 
Change, Volume 8, pages873–878 (2018)
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Planning and Control
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AUV SIRIUS 
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Coordinated Robotics
– Maui and Big Island, Hawaii in 

Jan/Feb 2018
– Schmidt Ocean Institute, WHOI, 

MIT, URI, U Michigan
– Coordinate multiple vehicles across 

multi-day campaigns.
– Adapt models and selection of 

science opportunities as observations 
are made.

– Manage risk, while maximizing 
resource usage and opportunities.

– (Following slides courtesy of Brian 
Williams, MIT)
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Logistics of Multivehicle Operations

Glider (WHOI)

Imaging Float (URI)

AUVs (Umich/Usyd)

USV (USyd)

Logitics (All)
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Everyday scenario: morning, Captain and Science team meet to elicit 
constraints and construct plan

7 a.m.

Slocum 
Glider

Sirius Umich 
Iver

Planning...
5:30 p.m.
Dinner
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I lost 
radio 
signal...

We’re still 
waiting... 5:30 p.m.

Dinner
1:00 p.m.
Execution..
.

A whale is in 
the ship’s 
way...

Everyday scenario: during the day, execution inevitably goes wrong... 
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7:30 p.m.
Delay in 
missions

5:30 p.m.
Negotiation...

Can you shorten your mission
from 90 minutes to 1 hour?

Can we push off the mission 
and recover your vehicle after 
dinner?

Can we use the emergency 
boat to recover the glider?

Everyday scenario: towards the end of day, there are many negotiations 
between the teams...
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Risk Aware Planning Tools

– Helps elicit each sub-team’s options 
and preferences.

– Negotiate conflicting goals between 
teams, and suggests adjustments.

– Monitors mission and environment, and 
proactively alerts relevant team 
members, while considering delays in 
communication and taking action.

Inputting the problem in scheduler

Feasible schedule in Gantt Chart 
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Probabilistic Habitat Modeling

– Multimodal learning and inference from 
visual and multibeam data 

– Deep learning framework to learn joint 
relationships between multibeam and 
visual data

10 International Journal of Robotics Research XX(X)

Visual Image Bathymetric Patches

Depth Feature

ScSPM
+DAE

DAE

Gated
model

1-of-k
Shared
layer

Mid
layer

Input 
layer

Figure 5. The proposed gated deep architecture. In contrast
with the previously introduced technique, a gated model is
utilised for the shared representation layer.

model outlined in the previous section does not
explicitly account for this factor.

In this section, we propose using a gated model for
the shared layer, which we argue is better equipped
to handle the ‘one-to-many’ relationship between the
two modalities. By using a gated model (as outlined in
Section 4.3), the joint distribution over both modalities
is conditioned on a latent indicator variable. This
e↵ectively learns multiple RBM components under
the same framework, with the indicator variable
switching between them on the fly. Simple heuristics
can be used to avoid having to specify the number of
components, and we also present techniques to predict
visual features and determine the associated mixture
probabilities when only bathymetry is available.

6.1 Architecture

The architecture employed by this model is almost
identical to that presented in the previous section,
except that it employs a gated model for the shared
representation layer. This additional complexity in
the shared layer gives rise to a number of additional
inference capabilities such as clustering and image-
based inference, which will be detailed in the following
sections.

6.2 Cluster Heuristics

In the original formulation of the Mixture of
RBMs model (Nair & Hinton, 2009b), an additional
temperature parameter T was used to scale the free
energies before computing the mixture probabilities in
Equation 5. This was a necessary inclusion due to the
fact that the free energy is an unnormalised quantity,
and helped to prevent the scenario of a single mixture
component having a high responsibility for most of the
dataset.

Algorithm 1 Predicting visual features from
bathymetry

1: for k = 1 to n

z

do

2: Initialise the mid layer feature vector with
zeros for the visual features, x = [xB;x⇤

V ] =
[xB; 0; 0; ...; 0].

3: while not converged do

4: Compute E
k

[h|x] = p(h|x, z
k

= 1).
5: Compute E

k

[xV |h] = p(xV |h=E
k

[h|x], z
k

=
1)

6: if kx⇤
V � E

k

[xV |h]k < ✏ then

7: converged
8: else

9: x

⇤
V ( E

k

[xV |h], x ( [xB;x⇤
V ]

10: end if

11: end while

12: E
k

[xV |xB] ( x

⇤
V .

13: end for

This can instead be solved using simple heuristics
to add and remove components during training, which
has the added benefit that the number of mixture
components does not need to be specified. While
there exist other principled approaches such as placing
a Dirichlet process prior on the mixture weights
(Steinberg, 2013; Kurihara et al., 2006), we propose
much simpler alternatives that are still able to select
the number of mixture components from the data. In
our experiments, we have found that even if we specify
a much larger number of clusters than expected, the
model naturally uses fewer components to describe
the data. Thus, an e↵ective heuristic is to monitor
the average mixture responsibility p (z

k

= 1 | x) of a
cluster k over the entire dataset, and remove the cluster
if this value drops below a threshold. In a similar
fashion, we split up a cluster if its mean mixture
responsibility exceeds a certain threshold, to prevent
the scenario of a single cluster being used for the
majority of the dataset. When splitting a cluster, the
new cluster parameters are copied directly from the
existing cluster. Our experiments show that after a few
parameter updates, the two identical clusters diverge
to capture di↵erent parts of the input dataset.

6.3 Conditional Sampling and Prediction

Without loss of generality, we assume the inference
task is to predict or sample visual features given
bathymetric features. We can predict the midlayer
visual features xV , conditioned on the midlayer bathy-
metric features xB, using a mean field approximation
(Algorithm 1).
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(a) Sand (b) Sand / reef interface, varying horizon-
tally

(c) Sponge

(d) Sparse kelp cover (e) Dense kelp cover (f) Patchy reef structure

Figure 8. Visualisation of a small number of the learned image features, in terms of the top 9 input images that maximally
activate each feature dimension. Accompanying each of the image groups is a description of the visual structure common to
the images within each group. The features capture a variety of factors of variation in the data: while many are linked with
habitat class labels, some also capture additional texture and orientation information, which may be useful for unsupervised
tasks (such as image-based queries). These images are best viewed in colour.

Table 4. Classification accuracy of visual feature
options

ScSPM CNN 1 CNN 2 CNN 3 CNN 4
79.98 % 80.76 % 79.65 % 77.88 % 78.23 %

Thus, the ScSPM-based pipeline is justified for
this application: it is able to achieve very similar
classification performance to CNNs with far lower
computational training load (1� 2 days compared with
approximately 10 days for the CNN models on a GTX
590 GPU), and does not require supervised labels for
feature learning.

7.4 Classification and mapping

A key requirement of the model is the ability to extract
useful features for classification and semantic mapping
tasks. We investigate this by training a classifier to
predict the five habitat classes described in Section 3:
sand, screw shell rubble, reef / sand interface, reef, and
kelp.

For all experiments, we use a regularised multi-
class logistic regression (“softmax”) classifier. The
data is divided randomly into equal-sized training
and test sets, and unsupervised multimodal learning
is performed on only the training data. Features are
then extracted for each of the three di↵erent modality
scenarios: with both B and V available, or with either
one on its own. The classification performance of
each of the multimodal learning models can then
be compared against the baseline option (of directly
using whichever modalities are available) for each
of these modality scenarios. For each classification
scenario, a 3-fold cross validation on the training set
to determine the optimal value of the regularisation
hyperparameter, which is used to train a classifier on
the entire training set. The trained classifiers are then
used to compute the prediction accuracy on the held-
out test set. Thus, the reported results provide an
indication of the prediction accuracy on unseen data
when either one or both modalities are available for
classification. The classification performance is shown
in Table 5 for di↵erent modality combinations.

Prepared using sagej.cls
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the gated model is linear in the number of mixture
components.

These results illustrate the key benefits of a
gated model over a standard model. In addition
to unsupervised clustering of the input data, the
model can be used to tractably generate conditional
samples from explicit regions of our highly multimodal
distribution. In contrast with a standard model, the
gated model can map a bathymetric feature to multiple
options simultaneously rather than a single mode /
label. In addition to sampling e↵ectively from a highly
multimodal conditional distribution, the model is able
to select a mode in a principled way.

7.2 Bathymetric Feature Learning

Having analysed how the multimodal learning models
operate on a toy problem, the next stage is to
investigate their e�cacy when applied to the real world
marine dataset.

First, we attempt to understand the performance of
bathymetric feature learning. The features learned by a
single layer feature learning model can be visualised by
plotting its weights as a patch of input pixels (Hinton,
2010). Accordingly, the learned bathymetric features
are shown in Figure 7. Interestingly, the DAE learns
edge and gradient filters similar to those obtained from
natural image patches (Coates et al., 2010; Lee et al.,
2009a).

Figure 7. A subset of the 1000 learned bases for 15⇥ 15
bathymetry patches, representing a 22.4m⇥ 22.4m area.

To the best knowledge of the authors, this work
is the first to utilise feature learning techniques
on acoustic bathymetric data. As a result, we
present additional analysis to justify this approach,
by comparing the learned features to hand-selected
features typically used for bathymetric classification:
multi-scale rugosity, slope, and aspect (Bender et al.,
2012). To compute these features, a given patch
of bathymetry data is represented as a Delaunay
triangulated surface mesh, and the plane of best fit is
determined using Principal Component Analysis. The
rugosity is the ratio between the mesh surface area and
the planar surface area, the slope represents the angle
between the plane of best fit and the horizontal plane,
and the aspect denotes the azimuthal direction of the

surface slope (Friedman et al., 2012). These features
are calculated on bathymetric patch sizes of 5⇥ 5,
9⇥ 9, 17⇥ 17, and 33⇥ 33, in order to correspond
directly with the distance scales used by Bender et al.
(2012).

One way to quantify the success of bathymetric
feature learning is to determine whether the hand-
selected rugosity, slope, and aspect (RSA) features
can be predicted by the learned representation. This
provides an answer as to whether they are ‘contained’
within the learned features. Accordingly, Linear Least
Squares is used to find the linear projection of the
learned features that best matches the hand-selected
features. The residual between the linear projection
and the actual value is used to calculate the R

2

coe�cient of determination for each RSA value. The
discriminative power of each of the RSA features
can also be quantified by using them individually
in the classification task. These two metrics together
provide a measure of (a) how well the learned features
can predict each of the hand-selected features, and
(b) the importance of the hand-selected features for
classification tasks. The R2 coe�cient values are shown
in Table 1, and the classification accuracies of each of
the features are shown in Table 2.

From Table 1, we observe that the learned features
are able to predict the rugosity, particularly at larger
scales. Unsurprisingly, the most accurate prediction,
with R

2 = 0.915, is at the scale closest to the 15⇥ 15
patch size used for bathymetric feature learning. The
results also suggest that the learned features contain a
large amount of slope information, but fail to capture
the aspect features.

Looking at Table 2, we observe a similar relationship
in terms of classification accuracy using each of
the hand-selected features individually. The rugosity
features have the largest discriminative power,
particularly at the 17⇥ 17 scale, followed by slope, and
then aspect. Put simply, there is a strong relationship
between the discriminative power of rugosity, slope,
and aspect features, and the ability to predict them
from the learned features.

This demonstrates the value of feature learning on
bathymetric data. The algorithm is able to learn the
structure of the data and, without any supervision,
extract the features and scales that tend to be the most
discriminative in classification tasks.

Table 3 shows the overall classification performance
with the combined bathymetric features. The accuracy
with the learned B

l

features is 5% greater than with the
hand-selected RSA features, which strongly justifies its
use for this application. The learned features are also

Prepared using sagej.cls

Rao et al. 19

in Section 6.4. Figure 11 shows query images from
di↵erent habitat classes and their resulting utility
maps.

The results are consistent with known predictions,
and are visually similar to the class probability maps
from Figure 9(e). Sand images may be observed
anywhere, but are more likely in the deep, flat-
bottomed areas towards the East, while reef images
are usually found in rugose (rugged terrain) regions.
Images containing both sand and reef are likely to
occur at the interface between the two, while kelp
forests are restricted to shallower waters.

Interestingly, while there are still a few depth
striations in the utility maps, they are weaker and
fewer, as compared to the habitat probability maps
from Figure 9(e). This indicates that the depth is a
stronger feature for the supervised classification task
than for the unsupervised learned relationship. That
is, the supervised classifier utilises the depth value
strongly, while the multimodal correlations learned in
the unsupervised learning stage are distributed over a
range of other bathymetric features as well.

The results demonstrate that, without any supervi-
sion, the model can handle image-based queries and
produce a utility map that is similar to a supervised
class probability map.

8 Conclusions

In this paper, we have proposed two models to
perform multimodal learning, using visual images and
remotely sensed sonar bathymetry data. The first
approach utilises a deep learning architecture, and the
second approach extends this using a gated model,
allowing the model to explicitly capture the one-to-
many relationship between the two modalities.

Through extensive experiments, we demonstrate
that these techniques are able to learn the underlying
structure of both modalities, and perform more
accurate classification, even when only one of the
modalities is available. By providing both modalities
at the feature learning stage, the model learns a shared
representation which implicitly encodes multimodal
information, and a better representation for single
modality classification can be obtained by projecting
into this space. This allows large-scale bathymetric
habitat mapping to be performed more accurately than
with traditionally used features.

The gated model is further able to cluster the
modalities in an unsupervised fashion, both singularly
and jointly, and can predict visual features in unseen
areas using bathymetry alone. This can be useful
for “query-by-image” tasks, where the goal is to
explore areas that are likely to look similar to a

⇥10 Similarity Map for Image 7

(a) Sand

6

⇥10 Similarity Map for Image 9

(b) Reef

⇥10 Similarity Map for Image 48

(c) Reef / Sand Interface

6

⇥10 Similarity Map for Image 2

(d) Kelp

Figure 11. Some image-based query results for images from
di↵erent habitat classes. Left: Query images. Right:
Corresponding utility maps over the whole O’Hara Blu↵
region, with white regions indicating higher utility.

given input image. Such tasks can aid the planning
of future surveys, particularly when supervised labels
are unavailable. Our experiments demonstrated that
the unsupervised utility map produced by each image-
based query was consistent with the supervised
probability map of the corresponding habitat class of
the image.

Future research directions will explore the use of
multimodal learning for survey planning in unseen
areas. In particular, it would be interesting to
investigate whether the proposed models can be used
to determine optimal dive locations in terms of the
information content of visual images obtained.

Prepared using sagej.cls
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Bayesian Experimental Design

2.5 km

2.5 km

Sand

Ro
ck

Kelp
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Bayesian Experimental Design

0.24520.2541

Survey
Planned
Variance

Predicted
Variance

Theoretical 
Variance

True
Variance

West-East 0.2541 0.2583 0.2601 0.3672

South-North 0.2452 0.2533 0.2488 0.2738

Planned Survey
Performed 
Survey
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ADAPTIVE ROBOTICS AT BARKLEY CANYON AND HYDRATE RIDGE

– Schmidt Ocean Institute 
cruise with University of 
Southampton and University 
of Tokyo to Barkley Canyon 
and Hydrate Ridge

– Objective to close loop on 
data collection

– Processing of high resolution 
imagery in the field to 
inform low altitude imaging
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Key Challenges with Planning

– High uncertainty in planning in the real world
– Weather
– Bathymetry
– Currents
– Vehicle Performance
– Other vessels and unexpected events

– Often don’t have access to an informative prior
– Bathymetric data may be available but not always
– Very little benthic imagery to help bootstrap planning process

– Difficulty in framing problem at a suitable level of abstraction
– Often faced with a poorly defined objective function
– Jointly planning over vehicle dives and ship locations is very high dimensional
– Lengthy process of setting up the planning problem relative to operational tempo



The University of Sydney

Data Analytics
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Managing marine image data

– Large, and growing, repository of online image 
data
– Individual dives consist of 10-80k stereo pairs

– Detailed analysis conducted by end users is 
laborious 
– Require more efficient tools to manage 

datasets
– Identifying patterns in the data can help to guide 

analysis towards habitats or organisms of interest
– Automated clustering and classification may 

help manage these datastreams

– Science Week outreach event provided access to 
public for citizen science
– 10,000 users annotated 300,000 images over 

the course of two months
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Machine Learning

– Developing Machine Learning tools 
to help manage data

– Unsupervised Cluster
– Similar to a dimensionality 

reduction algorithm 
– Cluster mixture/proportion 

descriptor for each dive
– Compact way of describing 

whole campaigns
– Supervised Classification

– Training algorithms to label 
whole images and pixels within 
images based on expert input
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CLASSIFIER: SVM

ACC PTS: 35/44 79.5% PXA:85.5%
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CLASSIFIER: SVM

ACC PTS: 27/38 71.1% PXA:81.9%

TP:50.0% TN:100.0% 

FP:50.0% FN:0.0%
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Automated Classifier for Lobsters
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Automated Classifier for Lobsters

– Investigating correlation between lobster location and 
terrain structure (measured by rugosity)

Detections Lobster Heat Map Rugosity Heat Map
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Automated Classifier for Lobsters

True

False
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Challenges with Data Analytics

– Consistency in labels across environments
– Relatively small amount of labelled data available.  Unbalanced across classes.
– Transfer learning across datasets, platforms, habitats
– Multimodal learning
– Low computational resources available on board (for online classification)
– Change detection in very unstructured, dynamic environments with significant 

challenges in lighting and registration
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Most Significant Challenge:

Number of Deployments == Number of Recoveries
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Tasmania – Safe Deployment and Recovery
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Tasmania – Safe Deployment and Recovery
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Antikythera 2014

– Invited to participate in survey of first 
century BC wreck at Antikythera, Greece

– A team from HMC and WHOI relocated 
the wreck and conducted preliminary 
surveys in 2012 and 2013

– Plans were put in place to return with a 
dive team to begin further excavation

– Sponsors provided access to vessels
– Required a map of the site prior to 

intervention
– Sonar bathymetric map produced in 

2013
– AUV based imaging mapping work 

conducted in 2014 and 2015
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Antikythera 2014

– Georeferenced map overlaid on underlying 
bathymetry

– Allows data be put into the context of the wreck 
site

– Models were used by divers to plan dives and 
record findings
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Antikythera 2014 excavation
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The 2015 Field Season

– In 2015 we were invited to return to 
the Antikythera wreck site

– The objective was to cover the area 
between the main wreck site and a 
secondary wreck in the south

– One hypothesis was that this was one 
giant wreck site

– Preliminary analysis of the dives 
completed two weeks ago suggests 
that in fact it is two distinct wrecks
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Can’t always trust the data…

– Our first dive was planned using 
underlying bathymteric map

– Dive consisted of crossing legs 
designed to allow SLAM to find 
loop closures for the reciprocal, 
1m spaced lines

– AUV started down first line, went 
over the edge of the cliff, turned 
to come back up the cliff and 
appeared to be stuck

– Abort sent but the vehicle 
remained at the base of the cliff 
in approximately 70m of water

– ROV deployed to investigate
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Can’t always trust the data…



The University of Sydney

That Lonely Day

– Despite all the hard work, 
preparation, safety briefings, 
etc., sometimes things just go 
wrong

– At depth, failures can be 
unforgiving

Nereus: Lost 05/14 
N of NZ at 10km

ABE: Lost 03/10 off Chile

ISIS ROV: Damaged 01/11 
under ship

Autosub: Lost 02/05 at 100km 
under Antarctic sea ice

ROV Kaiko: Lost 05/03 at 10km
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That Lonely Day

– Our AUV sank due to issues with trim 
during operations off SE Queensland in 
Nov. 2011

– Issues with vessel meant that tracking was 
halted to refuel, leaving the AUV 
untended for 4 hours

– On return acoustic tracking could not be 
re-established

– 3 days of search focused around area of 
loss as well as to the North and South but 
to no avail

– Received a call two weeks later alerting 
us to the fact that the vehicle had washed 
up on the Sunshine Coast 100km north of 
Moreton Island



The University of Sydney

Some Phenomenal Successes

– Despite all of these challenges, there have been some outstanding successes in the 
field
– Discovery of hydrothermal spreading centres
– A better understanding of life in our oceans support, Discovery of new forms of life and unknown 

ecosystems
– Cost-effective, in-situ validation of satellite observations
– Exploration of the deepest parts of our oceans

– It can be very rewarding – and a lot of fun
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Key Challenges

– Platforms and Sensing
– Vehicle operations ✅ , � ~
– Operating in difficult environments (turbidity, low 

light, high altitude) ~ 
– Coordinated deployments ✅
– Cooperative deployments ~
– Persistent operations ~ 

– Navigation and Mapping
– Online navigation ✅
– Post-dive visual SLAM ✅
– Online SLAM ~
– Automated registration ~
– Multi-modal mapping ~

– Planning and Control
– Low level control ✅
– Manual dive planning ✅
– Automated cruise planning ~
– Online planning ~

– Data Analytics
– Unsupervised analysis ✅
– Deep Learning ~
– Delivering information to stakeholders ~
– Characterising change ~

– Applications
– Responsive to stakeholder needs ✅
– Understanding requirements ✅
– Delivering raw data ✅
– Transforming data to information and improved 

understanding of the environment ~
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Future Challenges: Long Rang Autonomous Marine Teams

– Supervised autonomy for long range 
autonomous marine teams
– Identify salient information within a 

vehicle's sensor data
– Handle bandwidth constraints using 

information theoretic methods
– Architecture for supervised autonomy that 

facilitates operator feedback
– Integrated, operator-in-the-loop AUV 

system 
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Long range AUVs

– A number of organisations are now 
developing long range AUVs
– MBARI: Tethys vehicle (range: 1000km)
– Southampton: Autosub long range (range: 

6000km)

Images courtesy of MBARI and NOC
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Long range USVs

– Wave glider uses wave energy for propulsion
– Wave glider Long range/duration capability (recently 

completed ~17000 km crossing of Pacific)
– Saildrone are deploying fleets of long range autonomous 

sailboats and have covered over 350,000 km of ocean 
transits

Images courtesy of Liquid Robotics and Saildrone
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Conclusions and future work

– Marine robotic systems present novel tools for collecting rich, high resolution, geo-
referenced data sets

– Managing the data and transforming it into data products continues to be a key 
challenge

– Engaging with the end user community in exploring the application of these 
technologies to a variety of application domains

– Exciting challenges and novel applications likely to drive developments in these areas

– Currently have PhD and Postdoc positions available in marine robotics (as well as in 
the areas of mining, agriculture, UAVs, etc.).  Contact me if interested on 
stefan.williams@sydney.edu.au
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